
プログラムワークショップⅣ

レイトレーシング
2025年度 プログラムワークショップIV （14）



プログラムワークショップⅣ

今回のリポジトリ

• https://github.com/tpu-
game-
2025/PGWS4_14_raytracing

https://github.com/tpu-game-2025/PGWS4_14_raytracing
https://github.com/tpu-game-2025/PGWS4_14_raytracing
https://github.com/tpu-game-2025/PGWS4_14_raytracing
https://github.com/tpu-game-2025/PGWS4_14_raytracing
https://github.com/tpu-game-2025/PGWS4_14_raytracing
https://github.com/tpu-game-2025/PGWS4_14_raytracing


プログラムワークショップⅣ

本日の内容

• レイトレーシング概要

•簡単なレイトレーシング

• シーンの描画

• レイトレーシング影



プログラムワークショップⅣ

レイトレーシング

•各画素の色を視点から仮想スクリーンの各画素へのレイ（線分）を
追跡することで色を決める方法

描画するピクセル

光源に到達

他の方向からの反射 光源の色と反射色が反映される



プログラムワークショップⅣ

レイトレーシング

•視点からレイ（光の進む線）を逆追跡
• 光源にたどり取りついたらその色を参照

• 光源にたどり着く前の物体の反射で光の色の変化を記録
• 光の反射方向は表面の半球方向に反射

• 膨大な数のレイが必要になるので、効率化の研究が進められている

•光源から光を出しても良いが、各画素に到着するとは限らないの
で、視点から追跡する
• （この範囲での）物理法則は時間反転不変なので、
光源から追跡しても視点から追跡しても色は同じ



プログラムワークショップⅣ

ハードウェア
レイトレーシング
• GPUを使ってリアルタイムにレイ
トレーシングを実現

•パイプラインを変更し、シェーダー
の組み合わせと追加の固定機能で
実現
• 変更できない処理がある
• 交差判定は隠蔽されていて、変更で
きない
• BVH(Bounding Volume 

Hierarchy)が使われているはず
• 階層化されたAABBのグルーピング

•複数のシェーダを利用

https://developer.nvidia.com/blog/introduction-nvidia-rtx-directx-ray-tracing/



プログラムワークショップⅣ

シェーダ

• Ray Generation Shader: レイ生成
シェーダ
• 各画素からレイを飛ばす

• Closest Hit Shader: 最近傍衝突シェーダ
• 一番近い衝突点での処理

• Any Hit Shader: 任意衝突シェーダー
• いずれかに衝突した際の処理

• Miss Shader: 失敗シェーダ
• 衝突が起きなかった場合の処理

• Intersection Shader: 交差シェーダ
• 三角形以外の衝突判定

• Callable Shader: 呼び出し可能シェーダ
• 関数呼び出しとして機能する

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html



プログラムワークショップⅣ

本日の内容

• レイトレーシング概要

•簡単なレイトレーシング

• シーンの描画

• レイトレーシング影

「1 Ray Tracing 101」ディレクトリ



プログラムワークショップⅣ

参考

• https://blog.sili
constudio.co.jp/
2024/12/1923/

•今回のシェーダは、
自動生成されたコー
ドから改変

• Unityの仕様 (?)が
微妙に更新されてい
る

https://blog.siliconstudio.co.jp/2024/12/1923/
https://blog.siliconstudio.co.jp/2024/12/1923/
https://blog.siliconstudio.co.jp/2024/12/1923/
https://blog.siliconstudio.co.jp/2024/12/1923/


プログラムワークショップⅣ

①外す

②DirectX11を選択 削除

レイトレーシングできるようにする
(DirectX11を削除)

「Edit」-[Project Settings..]



プログラムワークショップⅣ

シェーダの追加

• 「Ray Tracing 
Shader」
• 名称例： 

NewRayTracingS
hader
• デフォルト名



プログラムワークショップⅣ

デフォルトのシェーダーコード

• レイ生成シェーダのみ
• 画面分のレイを生成して飛ばす

• 飛ばした後の処理を書いていないので、生成しただけで終わる

• 「RenderTarget」という名前のテクスチャに出力
• DispatchRaysIndex()で各レイを区別 NewRayTracingShader.raytrace



プログラムワークショップⅣ

レンダラー

•描画処理をするモジュール

•パイプライン
• 影マップの生成・影マップの反映や、
半透明・不透明で処理を分けたい

• レンダラーデータ
• 各シェーダで描画するオブジェクトを
選択できる

• レンダラーフィーチャー(機能)
• マルチパス等を一つにまとめる

• キューブマップの6面の描画を一つと
みなせる存在

Unity プロジェクト

レンダーパイプラインアセット

描画処理の一連の流れ

レンダラーデータ

レンダラーフィーチャー

レンダーパス

描画する機能・対象の選別

マルチパスを含めた一度の処理

オブジェクトを描画する処理の塊

シェーダー
描き方の選定



プログラムワークショップⅣ

描画機能
スクリプト
• レイトレーシングは
ラスタライズでは
ないので、大きく
描画の機能を変更
する必要がある



プログラムワークショップⅣ

生成
コード
•修正は
後から

パスに渡す初期化情報

各パスの描画処理の設定



プログラムワークショップⅣ

レンダラーデータ
に要素を追加
• 「PC_Renderer」に追加

1. Add Renderer 
Featureを選択

2. （作成した）「New URP 
Render Feature」
を追加

①

②



プログラムワークショップⅣ

レンダラー要素の編集

• NewURPRenderFeature::NewURPRenderFeaturePass::ExecutePassで
描画（DispatchRays）の実行

• 引数をRasterGraphCotextからUnsafeGraphContextに変更

• ２種類のコマンドバッファ
• native_cmd

• Command
Bufferクラス

• 描画用

• context.cmd
• Unsafe

Command
Bufferクラス

• GPUへの低レ
ベルアクセス

• テクスチャに描画し、
その結果をレンダー
テクスチャに転送

• 描画先：data.out
put__ColorText
ure

• レンダーテクスチャ:
ｄata.camera_
ColorTarget

NewURPRenderFeature.cs

Bit-Blt (Bitmap Bit Transfer)の略



プログラムワークショップⅣ

Execute
passの
呼び出し
• NewURPRender

FeaturePass:: 
RecordRenderG
raphに記述

• builder(IUnsafe
RenderGraphBui
lder)で
描画関数として設定

•

NewURPRenderFeature.cs

…

builderを自動破棄するためのusingステートメント
（引数の型は変更）

ExecutePassに渡すデータ(後述)を設定する
• ExecutePassで使っている変数
• 使い方を含めたテクスチャの利用の宣言



プログラムワークショップⅣ

パスデータ

• NewURPRenderFeaturePass::PassData

• ExecutePassで使うデータ

NewURPRenderFeature.cs

加速構造：シーンのBVH。今回は使わない



プログラムワークショップⅣ

パスデータで渡すデータの構築

• Builder
作成前の
処理

NewURPRenderFeature.cs

関係するデータをフレーデータから取得

描画するレンダーテクスチャをここで作成

最終的に画面を作成する先

加速構造は「Build」メソッドで計算（軽くないイメージ）



プログラムワークショップⅣ

NewURPRenderFeaturePassの
メンバーや初期化・解放
• シェーダは
コンストラクタ
で受け取る
• FeaturePass
は直接は、
Inspectorに
表示されない
• 表示される

Renderer
Feature
Scriptから
受け取る

• 加速構造は、
自動で解放され
ないので、解放
関数を作成
• 外部から呼ばれる絵
（後述）

NewURPRenderFeature.cs



プログラムワークショップⅣ

RendererFeatureクラス

•描画イベント
のデフォルト
からの変更
• 不透明後
ではなく
ポスト処理
直前

•解放関数の
作成
• 加速構造
の解放

NewURPRenderFeature.cs



プログラムワークショップⅣ

パスの追加

• NewURPRenderFeature：：AddRenderPass

•表示するウィンドウを指定できる
• ゲームで実行される画面にのみ描画

NewURPRenderFeature.cs



プログラムワークショップⅣ

レンダーパスに渡すデータ

• NewURPRenderFeature：：
NewURPRenderFeatureSettings

• シェーダの設定

NewURPRenderFeature.cs



プログラムワークショップⅣ

プロパティの
設定



プログラムワークショップⅣ

完成



プログラムワークショップⅣ

• レイトレーシング概要

•簡単なレイトレーシング

• シーンの描画

• レイトレーシング影

本日の内容

「2 Ray Tracing 3D」ディレクトリ



プログラムワークショップⅣ

準備

•先ほどと同じ状態まで進める
• 「1 Ray Tracing 101」の中身を 「2 Ray Tracing 3D」にコピーして
も良い



プログラムワークショップⅣ

今回の特徴

• シェーダを分ける
• Ray Tracing Shader: 全体で共通の処理

• レイを生成する

• 当らなかった時に背景色を与える

• URP Unlit Shader: オブジェクトごとの処理
• 交点の色を計算する

• テクスチャなどのマテリアルの情報を使用する



プログラムワークショップⅣ

アセットの追加

1. URP Unlit Shader
• 名称例： NewUnlit

UniversalRender
PipelineShader
• デフォルト

2. マテリアル
• 名称例： New Material

• デフォルト

• NewUnlitUniversal
RenderPipelineShaderを
設定

3. テクスチャ
• なんでもよい
• ここでは、Poly Haven
のMetal PlateのDiffuse
• https://polyhaven.

com/a/metal_plate

①②③



プログラムワークショップⅣ

シェーダのインクルード・オブジェクト

• シーンの情報を使うために、シェーダライブラリをインクルード

•加速構造のオブジェクトを追加

NewRayTracingShader.raytrace



プログラムワークショップⅣ

レイの生成（ピクセルごとの処理）

• ペイロード：レイの追跡において伝搬されるデータ

• TraceRay: レイを飛ばす

NewRayTracingShader.raytrace

ピクセルの区別

（次々頁）



プログラムワークショップⅣ

TraceRay 関数

•加速構造内の交点を検索するためのレイを送信する

https://learn.microsoft.com/ja-jp/windows/win32/direct3d12/traceray-function

加速構造

探索の仕方をフラグで与える

オブジェクトのマスク情報を使って探索から外せる

衝突用のシェーダをいくつか持つ際の順番の指定

オブジェクトのヒットグループの数

ミスシェーダのインデックスでの選択

レイの情報

光線の原点

光線の最小範囲

光線の方向

光線の最大範囲

レイが伝搬する情報



プログラムワークショップⅣ

レイの情報
の生成
•射影行列から
直接アスペクト
比や視野角を
取得する

𝑀𝑝𝑟𝑜𝑗 =

cot
𝑓𝑜𝑣
2

𝑎𝑠𝑝𝑒𝑐𝑡
0 0 0

0 cot
𝑓𝑜𝑣

2
0 0

0 0
𝑧𝑛

𝑧𝑛 − 𝑧𝑓

−𝑧𝑛𝑧𝑓
𝑧𝑛 − 𝑧𝑓

0 0 1 0

NewRayTracingShader.raytrace



プログラムワークショップⅣ

Missシェーダ

• レイが衝突しないときに呼び出されるシェーダ

•背景色を設定する

NewRayTracingShader.raytrace



プログラムワークショップⅣ

加速構造の設定

• テクスチャ
と同様に
Unsafe
Command
Buffer
で指定

NewURPRenderFeature.cs



プログラムワークショップⅣ

URP Unlit Shader

•パス名の追加
• NewURPRender

Feature::NewURP
RenderFeature
Pass::ExecutePass
で設定

• LightMode
(パスの役割)のタグ
にもパス名を指定

• レイトレーシングの
関数名を設定

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

ラスタライズ用のシェーダは不要

• _BaseMap等の宣言
は次頁で読み込む
LitInput.hlsl内に
ある

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

構造体
メンバー
• raytraceと
同じペイ
ロードを定義

• Attribute
Dataは、
交差した位置の
情報（重心座標）

• raytraceと
同じ加速構造
を宣言

• 頂点宣言は
使わないもの
も含めた

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

頂点情報の読み込み

•衝突したポリゴンのインデックス情報を通して頂点情報を取得

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

３頂点の情報を
重心座標で補間
•重心座標は２成分が
得られる
• ３成分の合計が１である
ことから残りを計算

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

色の計算

•情報が得
られれば
照明計算
できる

• ペイロー
ドで出力

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

オブジェクトの追加

1. 球や床を追加
• Sphere

• Plane

2. マテリアルを設定
• 両方のオブジェクト
に設定する

3. マテリアルに
テクスチャを設定

①

②

③



プログラムワークショップⅣ

完成



プログラムワークショップⅣ

• レイトレーシング概要

•簡単なレイトレーシング

• シーンの描画

• レイトレーシング影

本日の内容

「3 Ray Tracing Shadow」ディレクトリ



プログラムワークショップⅣ

準備

•先ほどと同じ状態まで進める
• 「2 Ray Tracing 3D」の中身を 「3 Ray Tracing Shadow」にコ
ピーしても良い



プログラムワークショップⅣ

違い

•交差したら、光源方向に
（２次）レイを飛ばして、
遮られたら影とする



プログラムワークショップⅣ

レイトレースの
シェーダの変更
• レイを飛ばす上限を2段階

• ミスシェーダの名称を変更
• ミスシェーダのインデックスが
名前のアルファベット順になる

• ２つのミスシェーダを使うので、
確実にアルファベット順にする

1. Miss00_MyMissShader

2. Miss01_ShadowMissShader

•影用のペイロードは色が不要
なので、小さくできる
• 衝突したかどうかだけ

NewRayTracingShader.raytrace



プログラムワークショップⅣ

オブジェクトのシェーダ

•色の計算で
追加でレイ
を飛ばして
（次頁のTr
aceRay）
その結果で
陰影を
つける
• 位置は
ワールド
座標系

NewUnlitUniversalRenderPipelineShader.shader



プログラムワークショップⅣ

シャドウレイ

• すぐに衝突しないように法線方向に微妙にずらして探索

NewUnlitUniversalRenderPipelineShader.shader

光源方向に追跡

Closestシェーダは使わない 一回でも交差したら終了(高速化)



プログラムワークショップⅣ

完成

•今回の例では利点が見えにくいが、ポリゴンエッジのぱっきりした
影を作ることができる
• シャドウマップの解像度に
よらない



プログラムワークショップⅣ

まとめ

• レイトレーシング概要

•簡単なレイトレーシング
• デフォルトで生成されるレイトレーシングのコードを表示する

• シーンの描画
• シーンに配置されたオブジェクトをレイトレーシングで表示する

• レイトレーシング影
• ２次レイを飛ばしてレイトレーシングならではのくっきりした影を実現


	スライド 3: レイトレーシング
	スライド 4: 今回のリポジトリ
	スライド 5: 本日の内容
	スライド 6: レイトレーシング
	スライド 7: レイトレーシング
	スライド 8: ハードウェア レイトレーシング
	スライド 9: シェーダ
	スライド 10: 本日の内容
	スライド 11: 参考
	スライド 12: レイトレーシングできるようにする (DirectX11を削除)
	スライド 13: シェーダの追加
	スライド 14: デフォルトのシェーダーコード
	スライド 15: レンダラー
	スライド 16: 描画機能 スクリプト
	スライド 17: 生成 コード
	スライド 18: レンダラーデータ に要素を追加
	スライド 19: レンダラー要素の編集
	スライド 20: Execute passの 呼び出し
	スライド 21: パスデータ
	スライド 22: パスデータで渡すデータの構築
	スライド 23: NewURPRenderFeaturePassの メンバーや初期化・解放
	スライド 24: RendererFeatureクラス
	スライド 25: パスの追加
	スライド 26: レンダーパスに渡すデータ
	スライド 27: プロパティの 設定
	スライド 28: 完成
	スライド 29: 本日の内容
	スライド 30: 準備
	スライド 31: 今回の特徴
	スライド 32: アセットの追加
	スライド 33: シェーダのインクルード・オブジェクト
	スライド 34: レイの生成（ピクセルごとの処理）
	スライド 35: TraceRay 関数
	スライド 36: レイの情報 の生成
	スライド 37: Missシェーダ
	スライド 38: 加速構造の設定
	スライド 39: URP Unlit Shader
	スライド 40: ラスタライズ用のシェーダは不要
	スライド 41: 構造体 メンバー
	スライド 42: 頂点情報の読み込み
	スライド 43: ３頂点の情報を 重心座標で補間
	スライド 44: 色の計算
	スライド 45: オブジェクトの追加
	スライド 46: 完成
	スライド 47: 本日の内容
	スライド 48: 準備
	スライド 49: 違い
	スライド 50: レイトレースの シェーダの変更
	スライド 51: オブジェクトのシェーダ
	スライド 52: シャドウレイ
	スライド 53: 完成
	スライド 54: まとめ

