
プログラムワークショップⅣ

コンピュートシェーダ
2025年度 プログラムワークショップIV (13)



プログラムワークショップⅣ

今回のリポジトリ

• https://github.com/tpu-
game-
2025/PGWS4_13_compute_
shader

https://github.com/tpu-game-2025/PGWS4_13_compute_shader
https://github.com/tpu-game-2025/PGWS4_13_compute_shader
https://github.com/tpu-game-2025/PGWS4_13_compute_shader
https://github.com/tpu-game-2025/PGWS4_13_compute_shader
https://github.com/tpu-game-2025/PGWS4_13_compute_shader
https://github.com/tpu-game-2025/PGWS4_13_compute_shader
https://github.com/tpu-game-2025/PGWS4_13_compute_shader


プログラムワークショップⅣ

もくじ

• コンピュートシェーダ概要

•簡単なコンピュートシェーダ

• GPUパーティクル



プログラムワークショップⅣ

もくじ

• コンピュートシェーダ概要

•簡単なコンピュートシェーダ

• GPUパーティクル



プログラムワークショップⅣ

コンピュートシェーダ

•現在、自由度が高い
処理に用いられてい
るシェーダ

•描画目的以外にも
GPUの並列性を使
えるようにしよう



プログラムワークショップⅣ

GPUに向いた計算

•同じプログラムをたくさんのデータに対して適応する
• 数千から数万の計算コアを有するので、何万以上の個数が向く

• なるべく独立して、他との依存性がない計算が良い

https://www.gdm.or.jp/review/2025/0123/571919



プログラムワークショップⅣ

使い道

• GPUパーティクル
• 細かなパーティクル

• 破片の物理演算

• Cluster Shading
• 空間をブロックに分け、ブロックごとに描画するオブジェクト・ライトを洗
い出して、大量のライトのシーンを高速に描画する



プログラムワークショップⅣ



プログラムワークショップⅣ

自動で追加されるソースコードの中身

// それぞれの#kernelは、どの関数をコンパイルするかを指示します; 多くのカーネルを持てます

4成分floatの読み書きできるテクスチャ

// enableRandomWriteフラグを持つRenderTextureを作成し、cs.SetTextureで設定せよ

８ｘ８ｘ１の単位で実行数（64単位で実行される）

返り値なし
// やること：実際のコードをここに挿入せよ！

全スレッドを通してユニークなIDを受けとる

てきとうな計算

ビット計算例 X軸で16個の周期計算 Y軸で16個の周期計算



プログラムワークショップⅣ

簡単なコンピュートシェーダ

#pragma kernel 関数名

RWTexture3D<float4> tex;

[numthreads(2, 8, 4)]
void 関数名(uint3 id : SV_DispatchTheadID)
{

tex[id] = float4(0, 0, 0, 1);
}

x

y

z

int kernel = computeshader.FindKernel(“関数名”);
computeshader.Dispatch(kernel, 3, 5, 7); (3*2, 5*8, 7*4)=(6, 40, 28)=6720個の処理が走る

これらの積が32や64の倍数でないと
GPUで暇になるコアが発生する

C#側



プログラムワークショップⅣ

https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-
dispatch

3次元配列の入れ子構造

引数として
取りうる型

全体の中でのグループのID
グループ中でのID

全ての中でのユニークなID

グループIDを１次元のインデックスに変換したもの

https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch
https://docs.microsoft.com/ja-jp/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-dispatch


プログラムワークショップⅣ

グローバル変数に使えるデータ型

• 読み書き可能(非圧縮、遅い)
• RWByteAddressBuffer：配列
• RWStructuredBuffer：構造体配列
• RWTexture1D 
• RWTexture1DArray：配列
• RWTexture2D 
• RWTexture2DArray
• RWTexture3D 

• 読み込み専用(圧縮されているかも?速い)
• StructuredBuffer
• Texture1D 
• Texture1DArray
• Texture2D 
• Texture2DArray
• Texture3D 
• Texture2DMS：マルチサンプリング
• Texture2DMSArray
• TextureCube：キューブマップ
• TextureCubeArray



プログラムワークショップⅣ

本日の内容

• コンピュートシェーダ概要

•簡単なコンピュートシェーダ
• GPUの計算結果をCPUで
読み込んで、オブジェクトを
配置してみる

• GPUパーティクル

シーン： 1 Compute Shader 101



プログラムワークショップⅣ

最低限のコード変更

• RWTexture2DをCPUで取得するのが面倒なので型を変更

インデックスを１次元に変更



プログラムワークショップⅣ

オブジェクト
配置
ComputeShader
MonoBehaviour
Scriptを追加して編集

• 今回は、8x8個実行

• ComputeBuffer
• RWStructured

Buffer(シェーダ側)の
コンテナ

• Dispatch：実行

• GetData
• CPUが読めるメモリに
コピー

• CreatePrimitive
• インスタンス生成

11



プログラムワークショップⅣ

やってみよう：
1 Compute Shader 101/1 Compute Shader 101 Scene

1. Compute Shader を追加
• 名称例：NewComputeShader

2. C# Scriptを追加
• 名称例：ComputeShader

MonoBehaviourScript

• C# Scriptを書き換え

• Compute Shader を書き換え

3. EmptyなGameObjectを追加
• 名称例：GameObject

4. GameObject にCompute
ShaderMonoBehaviour
Scriptをバインド

5. ComputeShaderMonoBehaviourScriptに
NewComputeShaderを設定

①②

③

④
⑤



プログラムワークショップⅣ

カメラを移動

•何となく見やすい
位置に



プログラムワークショップⅣ

完成

(id.y & 15) / 15.0

id.x & id.y
(id.x & 15) / 15.0



プログラムワークショップⅣ

もくじ

• コンピュートシェーダ概要

•簡単なコンピュートシェーダ

• GPUパーティクル

シーン： 2 GPU Particle Scene



プログラムワークショップⅣ

GPUパーティクルを試す

•地面についたら反射

•動きが止まったら吹き出し直し

•噴水のように動く

•色はランダム



プログラムワークショップⅣ

コンピュートシェーダの追加

•名称例：ParticleComputeShader



プログラムワークショップⅣ

乱数生成
ParticleComputeShader.compute



プログラムワークショップⅣ

構造体とオブジェクト

•構造体配列を定義 ParticleComputeShader.compute

関数の宣言

一つ一つの粒子のデータ

構造体配列



プログラムワークショップⅣ

初期化

ParticleComputeShader.compute

2

0.3

5

IDごとに異なる2次元の値を生成



プログラムワークショップⅣ

運動

•速度から位置を更新

•加速度（重力）で速度を更新
• 空気抵抗で少しずつ遅くする

•当たり判定
• 床より下に来たら上向きにする

• 跳ね返り係数を付けて勢いを
落とす

•終了判定
• 速度が一定以下になったら
再初期化

ParticleComputeShader.compute



プログラムワークショップⅣ

描画用のアセットを追加

1. マテリアル
• 名称例： 2 Particle Material

2. シェーダ
• 「Shader」-「URP Unlit Shader」

• 2 Particle Materialに設定

• 名称例：ParticleUnlitUniversalRenderPipelineShader

① ②



プログラムワークショップⅣ

シェーダ

• URP向けのシェーダとして、ある程度自動的に記述される
ParticleUnlitUniversalRenderPipelineShader. shader



プログラムワークショップⅣ

パーティク
ルの描画
• Id値から構造体
配列を読み込み
位置や色として
使用する

ParticleUnlitUniversalRenderPipelineShader. shader

Compute shaderと
同じ構造体を定義する

構造体配列へのアクセス

IDを入力として受け取ることにする



プログラムワークショップⅣ

CPU側の処理

• MonoBehaviourスクリプトの追加
• 名称例： ParticleMonoBehaviourScript



プログラムワークショップⅣ

ParticleMonoBehaviourScript.cs

Compute Shaderと同じメモリレイアウトの構造体
（型名は異なるが実質的に同じ型）

表示するシェーダへのアクセス
コンピュートシェーダへのアクセス

コンピュートシェーダの関数を呼び出すための対応付け
構造体配列の実体を保持

粒子数(THREAD_NUMの倍数に増やす調整)



プログラムワークショップⅣ

文字列で関数を検索

初期化関数の実行

関数ごとにバッファを
設定する必要あり

ParticleMonoBehaviourScript.cs



プログラムワークショップⅣ

ParticleMonoBehaviourScript.cs

OnEnableの対となる解放処理

更新関数の実行

描画処理は直接呼び出す



プログラムワークショップⅣ

オブジェクト
の追加
1. 「Create Empty」

で空のオブジェクトを
生成
• 名称例:GameObject

2. ParticleMonoBe
haviourScriptをオ
ブジェクトに追加

• ParticleMonoBeha
viourScriptのプロパ
ティを設定

3. Material: 2 
Particle Material

4. Compute 
Shader:ParticleC
omputeShader

①

②
③

④



プログラムワークショップⅣ

床の追加

•何もない場所を
跳ね返ると
変なので床を追加
• Planeを追加

• 原点に配置

• Scaleは1にして
いるがはみ出して
いるので、大きく
するのも良い



プログラムワークショップⅣ

カメラ

•見やすい位置に
調整
• ここでは-10から

-3に近づけた



プログラムワークショップⅣ

やってみよう



プログラムワークショップⅣ

まとめ

• コンピュートシェーダ概要

•簡単なコンピュートシェーダ
• デフォルトで生成されるコンピュートシェーダコードを素直に表示

• GPUパーティクル
• 大量の計算を並列に実行する


	スライド 9: コンピュートシェーダ
	スライド 10: 今回のリポジトリ
	スライド 11: もくじ
	スライド 12: もくじ
	スライド 13: コンピュートシェーダ
	スライド 14: GPUに向いた計算
	スライド 15: 使い道
	スライド 16
	スライド 17: 自動で追加されるソースコードの中身
	スライド 18: 簡単なコンピュートシェーダ
	スライド 19
	スライド 20: グローバル変数に使えるデータ型
	スライド 21: 本日の内容
	スライド 22: 最低限のコード変更
	スライド 23: オブジェクト 配置
	スライド 24: やってみよう： 1 Compute Shader 101/1 Compute Shader 101 Scene
	スライド 25: カメラを移動
	スライド 26: 完成
	スライド 27: もくじ
	スライド 28: GPUパーティクルを試す
	スライド 29: コンピュートシェーダの追加
	スライド 30: 乱数生成
	スライド 31: 構造体とオブジェクト
	スライド 32: 初期化
	スライド 33: 運動
	スライド 34: 描画用のアセットを追加
	スライド 35: シェーダ
	スライド 36: パーティク ルの描画
	スライド 37: CPU側の処理
	スライド 38
	スライド 39
	スライド 40
	スライド 41: オブジェクト の追加
	スライド 42: 床の追加
	スライド 43: カメラ
	スライド 44: やってみよう
	スライド 45: まとめ

