
プログラムワークショップⅣ

CPUプロシージャル生成
2025年度 プログラムワークショップIV (12)



プログラムワークショップⅣ

今回のリポジトリ

• https://github.com/tpu-game-
2025/PGWS4_12_cpu_procedural

https://github.com/tpu-game-2025/PGWS4_12_cpu_procedural
https://github.com/tpu-game-2025/PGWS4_12_cpu_procedural
https://github.com/tpu-game-2025/PGWS4_12_cpu_procedural
https://github.com/tpu-game-2025/PGWS4_12_cpu_procedural
https://github.com/tpu-game-2025/PGWS4_12_cpu_procedural
https://github.com/tpu-game-2025/PGWS4_12_cpu_procedural


プログラムワークショップⅣ

本日の内容

• CPUでのリソース生成
• テクスチャへの描画

• リヒテンベルク図形

• ポリゴンの描画

• 雷

シーン： 1 Texture Scene



プログラムワークショップⅣ

CPUからのテクスチャ描画

• CPUとGPUのやり取りは原則としてCPUからGPUに転送
• GPUの結果を受け取るのは計算終了の把握が難しいため難しい

• GPU内で結果を保存しておいて後のフレームでCPUで読み込む
• 古い情報しか取れない

• GPUの描画後にイベントを発生させてコールバック処理
• いつ結果を受け取れるかわからない



プログラムワークショップⅣ

GetPixelData

• テクスチャにデータを転送
するためのバッファを確保
• Applyで転送

• メインメモリに永続的に
バッファが確保されるので
はないので、値を埋めて
すぐに転送する

1 Texture/TextureMonoBehaviourScript



プログラムワークショップⅣ

やってみよう

• 「UI/Raw Image」オブジェクトの生成
• ①名称例：RawImage
• ②アンカー：中心
• ③位置：原点
• ④幅、高さ：1920x1080(画面に合わせる)

• マテリアルの作成
• ⑤名称例：Texture Material
• ⑥RawImageオブジェクトに設定

• 「Raw Image」 Material

• シェーダグラフの作成
• Canvas Shader Graph
• ⑦名称例：Textured Shader Graph
• ⑧Texture Materialに設定

• MonoBehaviour Scriptの生成
• ⑨名称例：

TextureMonoBehaviourScript
• ⑩RawImageオブジェクトにバインド

①
② ③
④

⑤

⑥

⑦ ⑨

⑩

⑧



プログラムワークショップⅣ

シェーダグラフ

• Texture2Dプロパティ
を追加
• Reference
「_Texture2D」を通して
CPUから認識する

• シェーダグラフは
テクスチャを表示
• サンプラー

• はっきりするようにポイント
サンプリング

• 上下、左右に回り込まない
ようにWrapはPoint



プログラムワークショップⅣ

スクリプト

• マテリアルを通してシェーダ
のテクスチャ設定
• テクスチャ自体も生成

• Texture2Dオブジェクト

• Texture Mono 
Behavior Scriptを設定
• マテリアル：Texture 

Material
• サイズ（幅と高さ）

1 Texture/TextureMonoBehaviourScript



プログラムワークショップⅣ

テクスチャ座標：左下が原点
左右：左から右
上下：下から上

完成



プログラムワークショップⅣ

本日の内容

• CPUからのリソース生成
• テクスチャの描画

• リヒテンベルク図形
• テクスチャ書き込みの応用

• ポリゴンの描画

• 雷

シーン： 2 Lichtenberg Scene



プログラムワークショップⅣ

雷

•高さは1, 2km

• 30-50mほどのステップ
で曲がりながら進む

https://www.publicdomainpictures.net/jp/view-image.php?image=215233



プログラムワークショップⅣ

雷の表現

•確率的に伸びていく
• リヒテンベルク図形

• 絶縁材料の表面または内部に
ときに現れる分岐放電の図形



プログラムワークショップⅣ

リヒテンベルク図形の作り方

•始点から確率的に伸ばしていく

•全てが埋まったら末端から親をたどる
• 末端からの距離の最大値を記録する

•末端からの距離の大きさを明るさとする

•雷の場合はいずれかが地面に着いた時点で光るのが良いかも
• 地面に着いたことを検索の終了条件として親をたどればよい

000

0

0

0

0

0 0 00 0 0

1

1

11

1

2

3 4 5 6

78

9

2

2



プログラムワークショップⅣ

やってみよう

• リヒテンベルク図形クラスの作成

• リヒテンベルク図形クラスを呼び出すMono Behaviourの作成

•表示用のUIの組み込み



プログラムワークショップⅣ

やってみよう

• リヒテンベルク図形クラスの作成

• リヒテンベルク図形クラスを呼び出すMono Behaviourの作成

•表示用のUIの組み込み



プログラムワークショップⅣ

C#スクリプト
の追加
• リヒテンベルク図形
はUnityと無関係
• MonoBehaviour
ではないクラスとし
て作る

• 一般的に、なるべく
依存性をなくすのが
好ましい
• 移植性

• 他の修正による不
具合が起きにくい

Lichtenberg.cs



プログラムワークショップⅣ

基本情報

• モード
• 全て探索
• 下についたら
終了

• 状態
• 構築中
• 完了

• 全て検索
• 下についたら
終了

• サイズ
• 幅
• 高さ

• 現在計算して
いるモード

Lichtenberg.cs



プログラムワークショップⅣ

メンバー変数

• parent: 親のインデックス
• 位置を線型化： index = y * Width + x

• edge: 次にいける場所を記録
• Parent(親)→Child(子)
• List: 可変長配列

• ランダムな選択が必要
なので、可変個数かつ、
途中の要素も高速に
アクセスできるコンテナ

• Value
• 末端からの距離の最大値
• キャッシュに載りやすい
ようにushortと小さく

• StartIndex
• 始点を記録

• ArriveIndex
• 端に着いた最初の点を記録

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

0 1 2 3 4 5 6

インデックス

Lichtenberg.cs



プログラムワークショップⅣ

コンスト
ラクタ
• サイズを指定

• メモリを確保

•始点を後からも
変更できる
ようにリセット
関数を用意

• インデックスは
-1を不定値
とした

Lichtenberg.cs



プログラムワークショップⅣ

初期化

•念のため、変数をリセット

•始点は親が自分自身で
あることで判定する
• 変数にも
保存して
いるが…

•続くセルを
edgeに登録
• 検索済み
（親が-1で
ない）なら
登録しない

parent
Index

il pos ir

id

iu

Lichtenberg.cs



プログラムワークショップⅣ

いける場所
を選択
• Listに登録がなければ
終了
• A*と同じ考え方

• 無作為に一つ選択
• シェーダでは実施しずら
いのでCPU処理となる

• 選んだら削除

• 選んだ場所が別の方向
から先に選ばれている
可能性がある。先に選ば
れていないか確認
• 親が登録されて
いるかどうか

• すでに選ばれてい
たら再トライ

• 選択したらさらに先を
追加

Lichtenberg.cs

C#Cのリストは末尾の削除が高速
（末尾のデータを移した後、末尾を削除）



プログラムワークショップⅣ

到達判定

•いける場所がなければ末端
• 末端からの距離を計算

•通常は「継続(Running)」
で１ループを終了

Lichtenberg.cs

Updateの続き



プログラムワークショップⅣ

最初に端に到達したら終了

•終了した際に高さ（pos/Width）
を見て、一番下(0)にたどり着いたら
終了とする
• 後で追えるように位置を保存

• 終了と同様に親への経路の最大値の
更新を挑戦してみる

• 探索用のエッジをクリアしてこれ以上
検索できないようにする

• 返り値をRunningではない値にする

Lichtenberg.cs



プログラムワークショップⅣ

やってみよう

• リヒテンベルク図形クラスの作成

• リヒテンベルク図形クラスを呼び出すMono Behaviourの作成

•表示用のUIの組み込み



プログラムワークショップⅣ

呼び出し

•更新用のMonoBehaviourを追加
• 名称例： LichtenbergMonoBehaviour



プログラムワークショップⅣ

図形の作成

• コルーチンで少しづつ
更新
• yield return nullで
各フレームセルを１つ
ずつ処理

•始点は、上部中央

LichtenbergMonoBehaviourScript.cs



プログラムワークショップⅣ

テクスチャ更新

• リヒテンベルク図形クラスの距離のデータを読み込んで正規化
LichtenbergMonoBehaviourScript.cs



プログラムワークショップⅣ

やってみよう

• リヒテンベルク図形クラスの作成

• リヒテンベルク図形クラスを呼び出すMono Behaviourの作成

•表示用のUIの組み込み



プログラムワークショップⅣ

可視化

1. マテリアルの追加
• 名称例：Textured Material
• すでに作成した、 「1 Texture/ 

Textured Shader Graph」を
設定

2. UI/Raw Image オブジェク
トの追加
• 名称例：Raw Image
• アンカー：中央
• 幅・高さ：表示サイズに合わせる
• 「Raw Image」の「Material」に
「Textured Material」を追加

• LichtenbergMonoBehavio
urスクリプトの追加

• プロパティのマテリアルに
「Textured Material」を設定

• プロパティの幅と高さを設定
• アスペクト比をオブジェクトの
アスペクト比と合わせるとセル
が正方形で表示される

①

②

③

④



プログラムワークショップⅣ

完成

• テクスチャの
解像度を
変更して
みよう



プログラムワークショップⅣ

引数の違い

•おおよそ円形に広がる

• すべてをたどると斜めが伸びがち
MODE.FINISH_AT_FIRST_ARRIVEMODE.ALL

この辺が
探索されない



プログラムワークショップⅣ

本日の内容

• CPUからのリソース生成
• テクスチャの描画

• リヒテンベルク図形

• ポリゴンの描画

• 雷

シーン： 3 Polygon Scene



プログラムワークショップⅣ

ポリゴンの描画

• コンポーネントの追加
• メッシュフィルター

• レンダリングされるメッシュを保持する

• メッシュレンダラー
• メッシュの描画設定を保持する
• Materialsにマテリアルを設定する

• マテリアル
• シェーダを設定する

• Shader Graph
• シェーダを記載する

• スクリプトの追加
• ポリゴンを生成

Game Object

Shader Graph

Script

PolygonMonoBehaviorScript

Material

Mesh Renderer

Materials: Element 0

Mesh Filter

Polygon Shader Graph

Polygon Material



プログラムワークショップⅣ

やってみよう

1. Shader Graphを追加
• 種類：Unlit Shader Graph
• 名称例：Polygon Shader Graph

2. マテリアルを追加
• 名称例：Polygon Material
• 「Polygon Shader Graph」を設定

3. Mono Behaviour Scriｐtを追加
• 名称例： PolygonMonoBehaviourScript

4. 「Empty Object」を追加
• コンポーネントを追加

• Mesh Filter
• Mesh Renderer

• MaterialsのElement0に「Polygon Material」を追加

• PolygonMonoBehaviourScript
• ドラッグアンドドロップ



プログラムワークショップⅣ

スクリプト

• メッシュオブジェクトを
取得

• リセット

•データを設定
• 頂点位置
• 頂点色
• 頂点インデックス

•重要なデータの計算
• バウンディングボックス
• 法線
今回は利用しないが
忘れないように

v[0]

v[1]

v[2]



プログラムワークショップⅣ

メッシュデータ

• トライアングルリスト

•三角形のインデックスで頂点データを指示
• 時計回りで指定

vertices[0]

vertices[1]

vertices[2]

vertices[3]

vertices[4]

vertices[5]

triangles 0 1 2 3 5 4 3個で一セット

時計回りが正面



プログラムワークショップⅣ

シェーダ

•頂点色を出力



プログラムワークショップⅣ

カメラレイアウト

•ゲームオブジェクトは原点に配置

• カメラを斜め上 (1.5, 1.5, 1.5) から見下ろす
• Rot: (30, -135, 0)



プログラムワークショップⅣ

完成

「シーン」タブでは実行したら現れる



プログラムワークショップⅣ

本日の内容

• CPUからのリソース生成
• テクスチャの描画

• リヒテンベルク図形

• ポリゴンの描画

• 雷
• リヒテンベルク図形

• ランダムウォーク

シーン： 4 Thunder Scene



プログラムワークショップⅣ

ポリゴンでの雷

• リヒテンベルク図形で作ったパターンにおいて、一番最初に地面
に到達した経路をポリゴンで表示する



プログラムワークショップⅣ

経路からポリゴンの生成

• 各セルの中心から幅となる線
分の計算
• 頂点で曲がる方向ー

• 進行方向→を計算
• 𝑑𝑖𝑟 =

𝑝𝑖+1 − 𝑝𝑖 + 𝑝𝑖 − 𝑝𝑖−1
= 𝑝𝑖+1 − 𝑝𝑖−1

• 前後の進行方向の平均
（和）

• 𝑝 𝑖 + 1 − 𝑝 𝑖 − 1

• 始点と終点は特殊処理
• 鉛直方向ーに進む

• 進行方向を90度回転

• 幅となる線分の頂点をつない
でポリゴンを作る
• 前後の幅によって作られる四
角形を2つの三角形に分割



プログラムワークショップⅣ

やってみよう

• Mono Behabiour Scriptの追加
• 名称例：ThunderMonoBehaviourScript

• GameObjectの追加
• Empty Objectでよい

• 名称例：Thunder

• コンポーネントの追加
• Mesh Filter

• Mesh Renderer

• ThunderMonoBehaviourScript



プログラムワークショップⅣ

メンバー変数

• メッシュ構築用
• メッシュ

• メッシュフィルターとして
• meshFilter

• マテリアル： material

• リヒテンベルク図形
• lichtenberg
• 大きさ

• TEX_WIDTH
• TEX_HEIGHT

• テクスチャ
• 可視化用

• 更新時間: time
• 1～3秒間隔で更新

ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

更新処理

• リヒテンベ
ルク図形は
whileルー
プで一気に
生成

•接地場所か
ら親を辿っ
たリストとし
て経路生成
• メッシュ生
成に渡す

ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

テクスチャ生成

•可視化用：リヒテンベルク図形の末端からの距離 ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

メッシュ生成

•基本的にはポリゴン数が増えた
だけ

ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

頂点カラー

•白のみ
ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

頂点インデックス

•四角形を3角形
ポリゴン2枚で
表現

• n（経路の頂点数）
＋２（両端に追加）
個

ThunderMonoBehaviourScript.cs

０

２

１

３

①

②
②

①



プログラムワークショップⅣ

端点
処理
• 下端と上端に
水平に頂点を
追加
• Vector3.

left方向

• 下端の点の真
下と上端の点
の真上
• 高さ範囲: 

[0,1000]
• 幅はセルが
正方形で表
示されるよ
うに調整

• X軸の原点は
リヒテンベル
ク図形の横方
向の中心に合
わせる

ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

経路の頂点

• 前後の頂点の
差から向きを
計算
• xyを入れ替え、
片方の符号を
変えてて回転

• 横方向の向き
が45度の際に
長さが 2倍に
なるよう補正
• 結果として差
をDotで2乗
した大きさを
割るのが正し
い

ThunderMonoBehaviourScript.cs

റｒ =
cos

𝜋

2
sin

𝜋

2

sin
𝜋

2
cos

𝜋

2

𝑑𝑖𝑟 =
0 −1
1 0

𝑑𝑖𝑟 =
−𝑑𝑖𝑟𝑦
𝑑𝑖𝑟𝑥



プログラムワークショップⅣ

始点と
終点
•前か後の頂点
がないので、
端点の真下と
真上の点との
差から方向を
決定

ThunderMonoBehaviourScript.cs



プログラムワークショップⅣ

マテリアル

1. シェーダグラフを追加
• Unlit Shader Graph
• 名称例：Thunder Shader 

Graph

2. マテリアルを追加
• 名称例：Thunder Material
3. Thunder Shader Graph

を設定
4. Thunderオブジェクトの

Materialに設定

• ThunderMonoBehaviour
Scriptの設定

5. Mesh FilterにThunderオ
ブジェクト（自分自身）を設定

6. 幅や高さは適当に設定
7. Materialは後で…

①②

③

④

⑤

⑥
⑦



プログラムワークショップⅣ

Thunder Shader Graph

•頂点色を出力



プログラムワークショップⅣ

床

• Planeオブジェク
トを追加

•原点中心

•大きさは1000倍



プログラムワークショップⅣ

Directional Light

•光の向きを浅くして夕方を表現
• 雷が見やすいように

重要ではないので、お好みで



プログラムワークショップⅣ

リヒテンベルク図形の可視化 (1/2)

左下に表示

1. マテリアルの追加
• 名称例：

Lichtenberg 
Material

• 「1 Texture/ 
Textured 
Shader Graph」
を設定

2. Raw Imageオ
ブジェクトの追加
3. Lichtenberg 

Materialを設定
①

②

③



プログラムワークショップⅣ

リヒテンベルク図形の可視化 (2/2)

• ThunderMonoBehaviourSc
riptの設定
• Materialに「 Lichtenberg 

Material」を追加



プログラムワークショップⅣ

Bloom: ぼんやり光らせる

組み込み済みのポストエフェクト

•範囲を指定するために「Global 
Volume」を追加

• Volumeプロファイルを追加



プログラムワークショップⅣ

Bloom
の追加
1. 「Add 

Override」
からBloom
を追加

2. Threshol
d、
Intensity
やScatter
を有効にし
て値を設定
• 後でみてい
い感じに

①

②



プログラムワークショップⅣ

カメラの設定

1. 「Post 
Processing」を有効
にしないとBloomが
かからない

• その他、カメラの設定を
調整

2. 遠く(0,1,-1000)か
ら見る

3. 少し上を見る（-20度）
4. 遠方クリッピング距離

を遠くにする
• ２０００

①

②
③

④



プログラムワークショップⅣ

完成



プログラムワークショップⅣ

本日の内容

• CPUからのリソース生成
• テクスチャの描画

• リヒテンベルク図形

• ポリゴンの描画

• 雷
• リヒテンベルク図形

• ランダムウォーク

シーン： 5 Random Walk



プログラムワークショップⅣ

酔歩（ランダムウォーク）

•次に進む向きがその時の状態によって確率的に決まる



プログラムワークショップⅣ

今回のランダムウォーク：乱雑なジグザグ

•次の向きを今の向きから一定範囲内のランダムで変える
• 下向きから始める

• y=1000から始めてy<0になったら終了
• 長いステップ地面につかなかったら強制終了

長さも乱数で変える



プログラムワークショップⅣ

スクリプトを追加

• Mono Behaviour Script
• 名称例：RandomWalkMonoBehaviourScript

• ThunderMonoBehaviourScript の中身をコピーして修正が手早い

• 調整用のパラメータを導入 RandomWalkMonoBehaviourScript.cs



プログラムワークショップⅣ

更新

• 1-3秒に一回更新する

RandomWalkMonoBehaviourScript.cs



プログラムワークショップⅣ

酔歩

• 3次元で処理
• 回転がしや
すい

• あらぬ方向に
行くと困るの
で、最大ス
テップ数を決
める

• 向きをランダ
ムに
quaternio
nで回転

• Lerpを使っ
て下方向に
向かわせる

RandomWalkMonoBehaviourScript.cs



プログラムワークショップⅣ

メッシュの構築

•ほとんどの処理が先
ほどと同じ

•変更点
端点の先にポリゴンを
追加しない

• 端点を上下に合わせ
て平らにする

• 頂点数：経路の頂点
の2倍

• ポリゴン数：経路の頂
点数-1の2倍

RandomWalkMonoBehaviourScript.cs

変更点（後述）

v[0] v[1]

v[2i]

v[2i+1]

v[2i-1]
v[2(i-1)]

v[2(i+1)]

v[2(i+1)+1]

p[0]

p[i-1]

p[i]

p[i+1]

①

②

p[n-1]
v[2(n-1)] v[2n-1]

①

②



プログラムワークショップⅣ

端点の処理

•左右に一定の幅で
広げる
• 幅はプロパティに
して変えられる
ようにしても
良いですねね

RandomWalkMonoBehaviourScript.cs



プログラムワークショップⅣ

途中のポリゴン

前後の位
置の差か
ら向きを
定め、90
度回転す
ることで
幅が広が
る向きを
決める

RandomWalkMonoBehaviourScript.cs



プログラムワークショップⅣ

ゲームオブジェクト

• Materialの作成
• Shader Graphを設定

• 4 Thunder/Thunder Shader Graph

•空のGameObjectを作成
• 名称例：Random Walk

• Mesh Filter を追加

• Mesh Renderer を追加
• Materialを追加

• RandomWalkMonoBehaviourScri
ptを追加
• パラメータをいい感じに設定



プログラムワークショップⅣ

その他

•先ほどと同じようにオブジェクトを追加・設定する
• 床

• ブルーム（グローバルボリューム）

• カメラ

• 平行光源(Directional Light)



プログラムワークショップⅣ

完成

•パラメータを変えた際の
変化を見てみよう



プログラムワークショップⅣ

まとめ

• CPUでのリソース生成
• テクスチャへの描画

• テクスチャに簡単な値(テクスチャ座標)を書き込む

• リヒテンベルク図形
• テクスチャに書き込む応用として雷の模様を作成する

• ポリゴンの描画
• ポリゴンを動的に生成する

• 雷
• ポリゴンの動的な作成の応用として雷の模様を作成する

• リヒテンベルク図形を基に

• ランダムウォーク


	スライド 9: CPUプロシージャル生成
	スライド 10: 今回のリポジトリ
	スライド 11: 本日の内容
	スライド 12: CPUからのテクスチャ描画
	スライド 13: GetPixelData
	スライド 14: やってみよう
	スライド 15: シェーダグラフ
	スライド 16: スクリプト
	スライド 17: 完成
	スライド 18: 本日の内容
	スライド 19: 雷
	スライド 20: 雷の表現
	スライド 21: リヒテンベルク図形の作り方
	スライド 22: やってみよう
	スライド 23: やってみよう
	スライド 24: C#スクリプト の追加
	スライド 25: 基本情報
	スライド 26: メンバー変数
	スライド 27: コンスト ラクタ
	スライド 28: 初期化
	スライド 29: いける場所 を選択
	スライド 30: 到達判定
	スライド 31: 最初に端に到達したら終了
	スライド 32: やってみよう
	スライド 33: 呼び出し
	スライド 34: 図形の作成
	スライド 35: テクスチャ更新
	スライド 36: やってみよう
	スライド 37: 可視化
	スライド 38: 完成
	スライド 39: 引数の違い
	スライド 40: 本日の内容
	スライド 41: ポリゴンの描画
	スライド 42: やってみよ う
	スライド 43: スクリプト
	スライド 44: メッシュデータ
	スライド 45: シェーダ
	スライド 46: カメラレイアウト
	スライド 47: 完成
	スライド 48: 本日の内容
	スライド 49: ポリゴンでの雷
	スライド 50: 経路からポリゴンの生成
	スライド 51: やってみよう
	スライド 52: メンバー変数
	スライド 53: 更新処理
	スライド 54: テクスチャ生成
	スライド 55: メッシュ生成
	スライド 56: 頂点カラー
	スライド 57: 頂点インデックス
	スライド 58: 端点 処理
	スライド 59: 経路の頂点
	スライド 60: 始点と 終点
	スライド 61: マテリアル
	スライド 62: Thunder Shader Graph
	スライド 63: 床
	スライド 64: Directional Light
	スライド 65: リヒテンベルク図形の可視化 (1/2)
	スライド 66: リヒテンベルク図形の可視化 (2/2)
	スライド 67: Bloom: ぼんやり光らせる
	スライド 68: Bloom の追加
	スライド 69: カメラの設定
	スライド 70: 完成
	スライド 71: 本日の内容
	スライド 72: 酔歩（ランダムウォーク）
	スライド 73: 今回のランダムウォーク：乱雑なジグザグ
	スライド 74: スクリプトを追加
	スライド 75: 更新
	スライド 76: 酔歩
	スライド 77: メッシュの構築
	スライド 78: 端点の処理
	スライド 79: 途中のポリゴン
	スライド 80: ゲームオブジェクト
	スライド 81: その他
	スライド 82: 完成
	スライド 83: まとめ

