
プログラムワークショップⅣ

カスタム
レンダーテクスチャ
2025年度 プログラムワークショップIV (11)

プログラムワークショップⅣ

今回のリポジトリ

• https://github.com/tpu-game-
2025/PGWS4_11_custom_rende
rtexture

https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture
https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture
https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture
https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture
https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture
https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture
https://github.com/tpu-game-2025/PGWS4_11_custom_rendertexture

プログラムワークショップⅣ

本日の内容

• カスタムレンダーテクスチャ
• カスタムレンダーテクスチャの概要

• ライフゲーム

• カールノイズ

プログラムワークショップⅣ

本日の内容

• カスタムレンダーテクスチャ
• カスタムレンダーテクスチャの概要

• ライフゲーム

• カールノイズ

シーン： 1 Lifegame Scene

プログラムワークショップⅣ

カスタムレンダーテクスチャの概要

• レンダーターゲットの問題
• 「カメラ」から見たものが描画される

• レンダリングは必ずしもカメラに紐づかない
• Shadertoyは全画面ポリゴンを一枚描画するだけ

• 同様に全体を更新する仕組みが欲しくなる

•画像全体の更新ならテクスチャ座標
を使って、直接シェーダでレンダリングする
のではだめなのか？
• より複雑な表現が可能になる

• 前のフレームの描画結果を使って実現する動的な処理

https://www.shadertoy.com/

プログラムワークショップⅣ

カスタムレンダーテクスチャ

•専用のテクスチャとシェーダ

プログラムワークショップⅣ

カスタムレンダーテクスチャ

• マテリアルの設定：更新するシェーダの指定

• Initialize Mode: 初期化タイミング
• テクスチャやマテリアルを使って書き換えられる

• On Load: 一度だけ更新（静的テクスチャ用）

• Real Time: 毎フレーム更新

• On Demand: スクリプトから更新（開始時に更新など）

• Update Mode: 更新タイミング
• Double Buffered: 前フレームの結果をテクス
チャとして読み込める

• Update Zone: 更新範囲を指定

プログラムワークショップⅣ

やってみよう：カスタムレンダーテクスチャ
の生成
• 「Create」 -
「Rendering」 -
「Custom Render
Texture」から生成

•名前を設定
• ここでは、「1

Lifegame」ディレクト
リに「1 Noise
Custom Render
Texture」という名称

プログラムワークショップⅣ

カスタムレンダーテクスチャ
の設定

1. 128×128

2. 単色

3. 深度バッファなし

4. Wrapはリピート

5. 更新： 「1 Noise
Material」
• 次で、シェーダグラ
フを作成

6. 初期化： 適当
• Updateの後に上
書きされないよう
にOnLoad

7. 更新: OnLoad
• 一度だけ更新

①

②
③

④

⑤

⑥

⑦

プログラムワークショップⅣ

カスタムレンダーテクスチャ用シェーダグラ
フの生成

• 「Create」 -
「Shader Graph」 -
「Custom Render
Texture」から生成

• 名前を設定
• ここでは、「1

Lifegame」ディレクト
リに「1 Noise
Shader Graph」とい
う名称

• マテリアルに設定
• ここでは、作成済みの
「1 Noise Material」

プログラムワークショップⅣ

シェーダグラフ
頂点シェーダなし

プレビューは正しくない

グローバル設定も特別

ここでは、白黒だけに
したかったので
Stepノードで分離

1000

とりあえず
大きな数

プログラムワークショップⅣ

可視化

1. マテリアルの作成
• 名称例：「1 Lifegame/1 Textured

Material」

2. シェーダグラフの作成
• Unlit Shader Graphで良い

• 名称例：「Textured Shader Graph」

3. シェーダグラフをマテリアルに設定

4. マテリアルをバインド
• 「Noise Quad」に

①

④

③

②

プログラムワークショップⅣ

可視化の
シェーダグラフ
• Propertyに

Texture２Dを追加

• サンプラーステート
• ポイントサンプリング

• くっきりと表示

• 赤成分をVector3の
すべての成分に入れる
• カスタムレンダーテクス
チャが1成分なので

マテリアルで
カスタムレンダー
テクスチャを指定

プログラムワークショップⅣ

完成

プログラムワークショップⅣ

特別なノードの紹介

• Custom Render Texture Self
• 直前の描画結果を読み込む

• Double Bufferingを有効にして前のフレームを読み込む

• Custom Render Texture Size
• 描画しようとしているカスタムレンダーテクスチャの
大きさ

• テクスチャ配列の場合は、Texture Depthとして、
配列数を取得可能

• Slice Index / Cubemap Face
• 描画しようとしているカスタムレンダーテクスチャの
キューブマップの面や配列のインデックス

プログラムワークショップⅣ

本日の内容

• カスタムレンダーテクスチャ
• カスタムレンダーテクスチャの概要

• ライフゲーム

• カールノイズ

シーン： 1 Lifegame Scene

プログラムワークショップⅣ

ライフゲーム

• イギリスの数学者ジョン・ホートン・コンウェイが考案した数理モデ
ル (1970)

• セルオートマトンの例
• 格子状のセルの更新を続ける離散的計算モデル

• 複雑な動きのアニメーションを生じる

プログラムワークショップⅣ

ライフゲームのルール

隣接する8つのセルの状態に応じて各セルを更新

•誕生
• 死んでいるセルに隣接する生きたセルがちょうど3つあれば、次の世代が誕生

•生存
• 生きているセルに隣接する生きたセルが2つか3つならば、次の世代でも生存

•過疎
• 生きているセルに隣接する生きたセルが1つ以下ならば、過疎により死滅

•過密
• 生きているセルに隣接する生きたセルが4つ以上ならば、過密により死滅

■：生きているセル、□：死んでいるセル

プログラムワークショップⅣ

ライフゲームの更新の疑似コード

• ライフゲームのルール
• 誕生：死んでいるセルに隣接する生きたセルがちょうど3つあれば、次の世代が誕生
• 生存：生きているセルに隣接する生きたセルが2つか3つならば、次の世代でも生存
• 過疎：生きているセルに隣接する生きたセルが1つ以下ならば、過疎により死滅
• 過密：生きているセルに隣接する生きたセルが4つ以上ならば、過密により死滅

• セルの更新は次の式で書ける（生きているセル:0, 死んでいるセル:1）
セル←lerp(

(生きた隣接セル数 <= 1 ? 1 : 0) + (4 <= 生きた隣接セル数 ? 1 : 0),
(生きた隣接セル数 <= 2 ? 1 : 0) + (4 <= 生きた隣接セル数 ? 1 : 0), 現在のセルの値)

= lerp(
(7 <= 死んだ隣接セル数 ? 1 : 0) + (死んだ隣接セル数 <= 4 ? 1 : 0),
(6 <= 死んだ隣接セル数 ? 1 : 0) + (死んだ隣接セル数 <= 4 ? 1 : 0), 現在のセルの値)

= lerp(
step(6.5, 死んだ隣接セル数) + step(死んだ隣接セル数, 4.5),
step(5.5, 死んだ隣接セル数) + step(死んだ隣接セル数, 4.5), 現在のセルの値)

生きた隣接セル数 0, 1 2 3 4,5,6,7,8

■：生きている □ ■ ■ □

□：死んでいる □ □ ■ □

「死んだ隣接セル数」の方が計算しやすいので変換

三項演算子をstepに置き換え。浮動小数点数用に中間の0.5で切り替え

(引数の順番を入れ替えて判定を反転しているのに注意)

プログラムワークショップⅣ

死んだ隣接セル数

周囲のテクセルの平均を求める

• ４つのサンプリング結果の平均

• サンプリング数を減らすために
２つのテクセルの中間の場所を
サンプリング
• （ハードウェア機能の）バイリニア
サンプリング機能を使うことで、
テクセルを読み込んだだけで、
２つのテクセルの平均が得られる

1

𝑊
,
1

2𝐻

−
1

2𝑊
,
1

𝐻

−
1

𝑊
,−

1

2𝐻

1

2𝑊
, −

1

𝐻

W: レンダーターゲットの幅
H: レンダーターゲットの高さ

1

𝐻

1

W

UVからのオフセット量

プログラムワークショップⅣ

やってみよう

• カスタムレンダーテクスチャの追加

•名称例：「1 Lifegame/2
Lifegame Custom render
Texture」

ノイズと似た設定

更新用マテリアル（後述）

更新タイミングをスクリプトで指定

生成したテクスチャを指定
毎フレ更新

ダブルバッファ（読み書きを切り替えて使用）

プログラムワークショップⅣ

更新用のスクリプトのバインド

①MonoBehaviorScriptの追加
（名称例InitializeMonoBehaviourScript）

②オブジェクトに
バインド

プログラムワークショップⅣ

更新用のスクリプトコード

• CustomRender
Textureクラス
• Initializeメソッドで
初期化呼び出しが可能

• Updateメソッドで更新
も可能（今回は未使用）

プログラムワークショップⅣ

更新用のスクリプトのプロパティ設定

プロパティとしてカスタム
レンダーテクスチャを指定

プログラムワークショップⅣ

シェーダグラフの生成

1. マテリアルの作成
• 名称例：「1 Lifegame/2 Lifegame Material」

2. シェーダグラフの作成
• Custom Render Target の

Shader Graph

• 名称例：「2 Lifegame Shader Graph」

3. シェーダグラフをマテリアルに設定

4. マテリアルをバインド
• 「Lifegame Quad」に

① ②

③

④

プログラムワークショップⅣ

シェーダグラフ

プログラムワークショップⅣ

隣接セルの死亡率 [0,1]

4つの項を合計

4で割って
正規化

0.25
カスタムレンダー
テクスチャの
幅と高さ

まとめる

逆数にする

減算を使うことで
定数の数を減らす

隣接セルの
読み込み

プログラムワークショップⅣ

ライフゲーム
のルール 隣接セルの死亡率

全体図では別の場所に
おいたノードから
ひっぱってきている
ので注意

lerp(step(6.5, 死んだ隣接セル数) + step(死んだ隣接セル数, 4.5),
step(5.5, 死んだ隣接セル数) + step(死んだ隣接セル数, 4.5), 現在のセルの値)

4.5

8
= 0.5625

5.5

8
= 0.6875

6.5

8
= 0.8125

セルの値の取得

念のため
0と1に分ける

生きたセルと
死んだセルの
切り替え

プログラムワークショップⅣ

可視化

1. マテリアルの作成
• 名称例：「1 Lifegame/2 Textured Material」

2. シェーダグラフをマテ
リアルに設定
• すでに作成した
「Textured Shader
Graph」のもの

3. マテリアルをバインド
• 「Lifegame Quad」に

①
②

③

プログラムワークショップⅣ

完成

プログラムワークショップⅣ

本日の内容

• カスタムレンダーテクスチャ
• カスタムレンダーテクスチャの概要

• ライフゲーム

• カールノイズ
• ノイズを使って模様を流す

• インタラクティブに動かす

シーン： 2 Curl Noise Scene

プログラムワークショップⅣ

今回のネタ2

•画面を流す一つの方法

プログラムワークショップⅣ

画面を流すには

• テクスチャを読む位置をずらす
• 場所ごとに少しづつ変えながら

•流体計算っぽいとかっこよさそう
• しかし、流体計算は負荷が高い

プログラムワークショップⅣ

Curl-Noise

• 流体としての質量を保存するノイズ
• Bridson, R., Houriham, J., &

Nordenstam, M. (2007). Curl-
noise for procedural fluid flow.
ACM Transactions on Graphics
(ToG), 26(3), 46-es.

• 日本語での解説例
• Curl Noise書いてみた

Qiita@nyamadandan
• https://qiita.com/nyamadandan/items

/2a8bc7a3639e7b5ce9c9
• UnityのCompute ShaderでCurl

Noiseを実装（流体編） - e.blog
• https://edom18.hateblo.jp/entry/201

8/01/18/081750

https://qiita.com/nyamadandan/items/2a8bc7a3639e7b5ce9c9
https://qiita.com/nyamadandan/items/2a8bc7a3639e7b5ce9c9
https://qiita.com/nyamadandan/items/2a8bc7a3639e7b5ce9c9
https://edom18.hateblo.jp/entry/2018/01/18/081750
https://edom18.hateblo.jp/entry/2018/01/18/081750
https://edom18.hateblo.jp/entry/2018/01/18/081750

プログラムワークショップⅣ

Curl-Noise

•流体と同じような特性を持つ場をプロシージャルに生成

•非圧縮性流体の特徴

•上記の場を強制的に作り出す

𝛻 റ𝑣 = 0
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝑦

+
𝜕𝑣𝑧
𝜕𝑧

= 0

流れは何もないところから湧き出さない

റ𝑣 = 𝛻 × 𝜑 𝛻 ∙ 𝛻 × 𝜑 = 0なぜなら
𝛻に直交する

プログラムワークショップⅣ

Curl noiseの作り方(3次元)

• 3次元の場 を定義する

•回転()計算をして、速度場を作る

•速度に応じて、テクスチャ座標をずらしてテクスチャを読み込む

റ𝑣 = 𝛻 × 𝜑 =
𝜕𝜑𝑧
𝜕𝑦

−
𝜕𝜑𝑦

𝜕𝑧
,
𝜕𝜑𝑥
𝜕𝑧

−
𝜕𝜑𝑧
𝜕𝑥

,
𝜕𝜑𝑦

𝜕𝑥
−
𝜕𝜑𝑥
𝜕𝑦

𝜑𝛻 ×

𝜑

プログラムワークショップⅣ

2次元のcurl noise

•場は1次元

• Curlは2次元平面での回転
• 3次元の𝜑𝑧に対する計算

റ𝑣 = 𝛻 × 𝜑 =
𝜕𝜑

𝜕𝑦
,−

𝜕𝜑

𝜕𝑥

𝜑 = 𝜑(𝑥, 𝑦)

プログラムワークショップⅣ

実装手順

⓪ 場𝜑初期化
(Perlin noise)

①場𝜑をcurlして

速度場を計算

フレーム毎
に交換

② 流れの逆向き
の位置の前フレー
ムの画像をサンプ
リングして画像を
アニメーション

⓪ 画像を初期化

Field Custom Render
Texture

Velocity Custom Render
Texture

Color Custom Render
Texture

PGWS4.PNG

Color Shader
Graph

Initialize Shader Graph Velocity Shader
Graph

プログラムワークショップⅣ

ステップ1：ノイズ（流れの元）

•赤成分にPerlinノイズを当てはめる
• 「1 RawImage Field」で可視化する

• 「UI/Raw Image」オブジェクト

プログラムワークショップⅣ

Custom Render Textureの追加

•場所: Assets/
2 Curl Noise

•名称例：1 Field
Custom Render
Texture

プログラムワークショップⅣ

シェーダグラフの追加

•専用のアセット（Custom
Render Texture）
• 名称例： Initialize

Shader Graph

• マテリアルも追加して設定
• 名前例： Initialize

Material

プログラムワークショップⅣ

Custom Render
Textureの設定
1. サイズ：フルHD(1920×1080)

• アスペクト比が同じであれば、好みで良い
• 小さいほど処理が軽いが、粗くなる

• 時間があれば変更してみよう

2. フォーマット：R32_SFLOAT
• 精度を高めるために浮動小数点数

3. サンプラーは「Point」しか使えない(HW的に)

4. 深度バッファは不要
5. 更新用のマテリアルを設定

6. Inspectorでのパラメータ調整を反映
できるようにするために「Realtime」更新

7. 今回は初期化は適当で良い
• Updateで更新しないでinitialization Mode
で計算する方が実行時の負荷は低い

①

②

③

④

⑤

⑥

⑦

プログラムワークショップⅣ

表示の設定

• オブジェクトのテクスチャに
カスタムレンダーテクスチャを設定

プログラムワークショップⅣ

シェーダグラフ Initialize Shader Graph

プログラムワークショップⅣ

Initialize Shader Graphシェーダグラフ

(1920, 1080): アスペクト比に合わせるため
オブジェクトサイズに拡大する

プログラムワークショップⅣ

Initialize Shader Graphシェーダグラフ

細かさをプロパティ「density」で変更
できるようにしてノイズをサンプリング

プログラムワークショップⅣ

やってみよう
ステップ1：ノイズ（流れの元）
• Inspectorで値を変更してみよう

プログラムワークショップⅣ

ステップ2：流れ場の生成

• ノイズによる場をCurlする
• 「1 RawImage Velocity」で可視化する

• 「UI/Raw Image」オブジェクト

プログラムワークショップⅣ

アセットの追加

1. カスタムレンダーテクスチャ
• 名称例： 1 Velocity Custom Render Texture

2. マテリアル
• 名称例： 1 Velocity Material

3. シェーダグラフ（Custom Render Texture）
• 名称例： Velocity Shader Graph

4. 「1 Velocity Material」に設定

① ②

④

③

プログラムワークショップⅣ

Custom Render
Textureの設定
1. サイズ：フルHD(1920×1080)

• Initialize Shader Graphと合わせる
• 合わせなくても動くが、情報の無駄が少ない

2. フォーマット：R32G32_SFLOAT
• 負の値も使うので符号付き
• 精度を高めるために浮動小数点数

3. サンプラーは「Point」しか使えない(HW的に)

4. 深度バッファは不要

5. 更新用のマテリアルを設定
6. Inspectorでのパラメータ調整を反映
できるようにするために「Realtime」更新

7. 今回は初期化は適当で良い

①

②

③

④

⑤

⑥

⑦

プログラムワークショップⅣ

シェーダグラフ Velocity Shader Graph

プログラムワークショップⅣ

Velocity Shader Graphシェーダグラフ
場のテクスチャのサンプリング
（後で、使いまわすようにテクスチャは
プロパティ経由で設定）

マテリアルのインスペクターで「1 Field
Custom Render Texture」を指定

プログラムワークショップⅣ

Velocity Shader Graphシェーダグラフ ∇×𝜑の計算

𝜕𝜑

𝜕𝑦

−
𝜕𝜑

𝜕𝑥

x成分
y成分

プログラムワークショップⅣ

Velocity Shader Graphシェーダグラフ

赤成分と緑成分に出力

プログラムワークショップⅣ

可視化

•値が小さく、負の値を含むため、そのままの表示では見難い

•可視化用のマテリアルとシェーダグラフを追加
1. マテリアル

• 名称例：1 Visualize Velocity
Material

2. シェーダグラフ
• 種類：Canvas Shader Graph

• UI用

• 名称例：Visualize Canvas
Shader Graph

3. シェーダグラフをマテリアル
に設定

①

②

③

プログラムワークショップⅣ

シェーダグラフ Visualize Canvas Shader Graph

プログラムワークショップⅣ

シェーダグラフ Visualize Canvas Shader Graph

速度のテクスチャのサンプリング
（後で、使いまわすようにテクスチャは
プロパティ経由で設定）

プログラムワークショップⅣ

シェーダグラフ Visualize Canvas Shader Graph

強調のために値を大きくできるようにする。
範囲：[0,100０0] 初期値：100

プログラムワークショップⅣ

シェーダグラフ Visualize Canvas Shader Graph

負の値が見れるように底上げする。
範囲：[0,1] 初期値：0.5

プログラムワークショップⅣ

オブジェクトの設定

1. 描画にマテリアルを設定

2. マテリアルでテクスチャを設定
3. 他のパラメータは、結果が見やすい

ように

1 Velocity Custom Render Texture

①

②

③

プログラムワークショップⅣ

やってみよう
ステップ2：流れ場の生成
• Inspectorで値(Initialize Materialのdensity)を変更して
みよう

プログラムワークショップⅣ

ステップ3：模様を流す

•流れ場で模様を動かす：速度の量だけ反対向きの位置を読み込む
• 「1 RawImage Color」で可視化する

• 「UI/Raw Image」オブジェクト

プログラムワークショップⅣ

アセットの追加

1. カスタムレンダーテクスチャ
• 名称例： 1 Color Custom Render Texture

2. マテリアル
• 名称例： 1 Color Material

3. シェーダグラフ（Custom Render Texture）
• 名称例： Color Shader Graph

4. 「1 Color Material」に設定

① ②
④

③

プログラムワークショップⅣ

Custom Render
Textureの設定
1. サイズ：フルHD(1920×1080)

• 1 Velocity Custom Render Textureと
合わせる
• 合わせなくても動くが、情報の無駄が少ない

2. フォーマット：R8G8B8A8_UNORM
• 表示されるものなので、高い精度は不要
3. サンプラーは「Biｌinear」が使える

4. 深度バッファは不要
5. 更新用のマテリアルを設定

6. Inspectorでのパラメータ調整を反映
できるようにするために「Realtime」更新

7. 初期化はスクリプトで実行（OnDemend）
• 色（白）とテクスチャの乗算

8. ダブルバッファ

①

②

③

④

⑤

⑥

⑦

⑧

プログラムワークショップⅣ

オブジェクトの設定

• オブジェクトのテクスチャに
カスタムレンダーテクスチャを設定

•更新用にスクリプトを追加
• 「1 Lifegame」に作った「InitializeMono

BehaviourScript」を利用
• スクリプトのテクスチャにも「1 Color Custom

Render Texture」を設定

プログラムワークショップⅣ

シェーダグラフ Color Shader Graph

プログラムワークショップⅣ

Color Shader Graphシェーダグラフ 速度のテクスチャのサンプリング
（後で、使いまわすようにテクスチャは
プロパティ経由で設定）

プログラムワークショップⅣ

Color Shader Graphシェーダグラフ

(1080, 1920): 速度
をアスペクト比に合わせ
るためオブジェクトサイ
ズに「反」比例した量で
調整（調整が楽になるよ
うに入れ替えることで値
を設定）

プログラムワークショップⅣ

Color Shader Graphシェーダグラフ

すらず量に強弱をつけて流れの速さを調整

プログラムワークショップⅣ

Color Shader Graphシェーダグラフ

流れてくる元の場所を読み込むように
テクスチャ座標をずらす

プログラムワークショップⅣ

Color Shader Graphシェーダグラフ

ずらしながら前のフレームの結果を読み込んで出力

プログラムワークショップⅣ

マテリアルの設定

1 Velocity Custom Render Texture

プログラムワークショップⅣ

やってみよう
ステップ3：模様を流す
• Inspectorで値(intensityなど)を変更してみよう

•初期化用のテクスチャを
自分の好きなものに
変えてみよう

プログラムワークショップⅣ

本日の内容

• カスタムレンダーテクスチャ
• カスタムレンダーテクスチャの概要

• ライフゲーム

• カールノイズ
• ノイズを使って模様を流す

• インタラクティブに動かす

シーン： 2 Curl Noise Scene

プログラムワークショップⅣ

ステップ4：ドラッグで初期化

• ドラッグでカーソルが合った場所を赤くする
• 「2 RawImage Field」で可視化する

• 基準色は灰色だが利用は赤成分
のみ

• 「UI/Raw Image」オブジェクト

プログラムワークショップⅣ

インタラクティブに動かす

•画面上でドラッグした際にその動きで模様を動かす
1. ドラッグの場所を検出する

2. ドラッグした場所の場を変化
させる

3. 先ほどと同じ要領で流れを
作成して、模様を流す

プログラムワークショップⅣ

ドラッグの場所を検出する

イベントにより処理

1. スクリプトを追加して、イベント時の処理を作成

2. ドラッグ対象のオブジェクトにイベントを追加
• OnDrag()

3. イベントに応じてシェーダにパラメータを送る

4. シェーダではパラメータに応じて場を作成する

プログラムワークショップⅣ

1．スクリプトを追加して、イベント時の処理
を作成
1. MonoBehaviourスクリプトの追加

• 名称例：ColorMono
BehaviourScript

2. メソッドを追加

ColorMonoBehaviourScript.cs

①

②

プログラムワークショップⅣ

2.ドラッグ対象のオブジェ
クトにイベントを追加
1. ドラッグ対象のオブジェクトに
スクリプトを追加

2. ドラッグ対象のオブジェクトに「Event
Trigger」コンポーネントを追加

3. Event Triggerコンポーネントの
「Add New Event Type」から
「Drag」イベントを追加

• Dragイベントを設定
4. 自分自身（2 Raw Inage

Color オブジェクト）
5. ColorMonoBehaviour

Script.OnDragメソッド

①

②

③

③

④
⑤

プログラムワークショップⅣ

3．イベントに応じてシェーダにパラメータ
を送る ColorMonoBehaviourScript.cs

シェーダーのマテリアル
ドラッグ時以外に０を与えるためのメンバー

Updadeで値（強さ）を送る
送ったら0にして次のフレームでは0を送る

ローカル座標の取得
カーソルのローカル座標値を送る

強さはひとまずマジックナンバー（よくない！）

プログラムワークショップⅣ

スクリプトにおける他の処理

• ２つのカスタムレンダー
テクスチャの初期化
• 表示用と元となる場

ColorMonoBehaviourScript.cs

プログラムワークショップⅣ

4．シェーダではパラメータに応じて場を作
成する
• アセットの追加

1. カスタムレンダーテクスチャ
• 名称例： 2 Field Custom Render Texture

2. マテリアル
• 名称例： 2 Field Material

3. シェーダグラフ（Custom Render Texture）
• 名称例： Field Shader Graph

4. 「2 Field Material」に設定

① ②
③

④

プログラムワークショップⅣ

Custom Render
Textureの設定
1. サイズ：フルHD(1920×1080)

• アスペクト比が同じであれば、好みで良い
• 小さいほど処理が軽いが、粗くなる

• 時間があれば変更してみよう

2. フォーマット：R32_SFLOAT
• 精度を高めるために浮動小数点数

3. サンプラーは「Point」しか使えない(HW的に)

4. 深度バッファは不要

5. 更新用のマテリアルを設定
6. Inspectorでのパラメータ調整を反映

できるようにするために「Realtime」更新

7. 初期化はスクリプトで実行（OnDemend）
• 色（黒）

8. ダブルバッファ

①

②

③

④

⑤

⑥

⑦

⑧

プログラムワークショップⅣ

シェーダグラフ Field Shader Graph

プログラムワークショップⅣ

シェーダグラフ

•なだらかな円としてガウス関数 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∗ exp −
𝑥 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2

𝑅𝑎𝑑𝑖𝑢𝑠2

Field Shader Graph

アスペクト比の補正のためのサイズの乗算

上書きされるので
初期値は適当でよい
ここでは、（0.5,0.5）

範囲:[0,1000]
初期値：80
おおよその円の大きさ

上書きされるので
適当でよい
ここでは、範囲:[0,10], 初期値:0

プログラムワークショップⅣ

シェーダグラフ

•放置すると
少しずつ減衰（止まる）

Field Shader Graph

𝑥 ← 0.99𝑥

範囲:[0, 1]
初期値：0.99
前のフレームの結果の
残り具合

プログラムワークショップⅣ

シェーダグラフ Field Shader Graph

2つの結果を加算して出力

プログラムワークショップⅣ

スクリプトのメンバー設定

• レンダーターゲットの初期化とシェーダ
の値の設定としてマテリアルを設定
• テクスチャは共に「2 Field Custom

Render Texture」
• 片方(Tex Color)は違うが、設定しないと
エラーになるので、仮のものとして設定し、
後で差し替える

後で差し替えます

プログラムワークショップⅣ

可視化

値が小さくなるので、強調する可視化のシェーダを通す
1. マテリアルの追加

• 名称例：「2 Visualize Field Material」

2. シェーダの登録
• 「2 Visualize Field Material」に「Visualize

Canvas Shader Graph」を登録

3. オブジェクトのマテリアルに設定
• 「2 RawImage Field」の「Raw Image」-「Material」
に「2 Visualize Field Material」を設定

4. パラメータの調整(2 Visualize Field Material)
• Texture 2D: 「2 Field Custom Render Texture」
• Scale: 500 など
• Bias: 0.5 2 Field Custom Render Texture

①
②

④

③

プログラムワークショップⅣ

やってみよう
ステップ4：ドラッグで初期化
• ぐりぐりして動作を見てみよう

• まだ右下の模様の流れ
は実装していません

プログラムワークショップⅣ

ステップ5：流れ場の生成

• ノイズによる場をCurlする
• 「2 RawImage Velocity」で可視化する

• 「UI/Raw Image」オブジェクト

プログラムワークショップⅣ

アセットの追加

1. カスタムレンダーテクスチャ
• 名称例： ２ Velocity Custom Render Texture

2. マテリアル
• 名称例： ２ Velocity Material

3. シェーダグラフをマテリアルに設定
• 「Velocity Shader Graph」を
「２ Velocity Material」に

① ②

③

プログラムワークショップⅣ

Custom Render
Textureの設定
1. サイズ：フルHD(1920×1080)

• Initialize Shader Graphと合わせる
• 合わせなくても動くが、情報の無駄が少ない

2. フォーマット：R32G32_SFLOAT
• 負の値も使うので符号付き
• 精度を高めるために浮動小数点数

3. サンプラーは「Point」しか使えない(HW的に)

4. 深度バッファは不要

5. 更新用のマテリアルを設定
6. Inspectorでのパラメータ調整を反映

できるようにするために「Realtime」更新

7. 今回は初期化は適当で良い

①

②

③

④

⑤

⑥

⑦

プログラムワークショップⅣ

可視化

•値が小さく、負の値を含むため、そのままの表示では見難い

•可視化用のマテリアルを追加
1. マテリアルを追加

• 名称例：2 Visualize Velocity Material

2. シェーダグラフをマテリアルに設定
• Visualize Canvas Shader Graph を

2 Visualize Velocity Materialに設定

①

②

プログラムワークショップⅣ

オブジェクトの設定

1. 描画にマテリアルを設定

2. マテリアルでテクスチャを設定
3. 他のパラメータは、結果が見やすいように

2 Velocity Custom Render Texture

①

②

③

プログラムワークショップⅣ

やってみよう
ステップ5：流れ場の生成
• ぐりぐりして動作を見てみよう

• まだ右下の模様の流れ
は実装していません

プログラムワークショップⅣ

ステップ６：模様を流す

•流れ場で模様を動かす：速度の量だけ反対向きの位置を読み込む
• 「2 RawImage Color」で可視化する

• 「UI/Raw Image」オブジェクト

プログラムワークショップⅣ

アセットの追加

1. カスタムレンダーテクスチャ
• 名称例： 2 Color Custom Render Texture

2. マテリアル
• 名称例： 2 Color Material

3. Color Shader Graphを
「2 Color Material」に設定

① ②

③

プログラムワークショップⅣ

Custom Render
Textureの設定
1. サイズ：フルHD(1920×1080)

• 1 Velocity Custom Render Textureと
合わせる
• 合わせなくても動くが、情報の無駄が少ない

2. フォーマット：R8G8B8A8_UNORM
• 表示されるものなので、高い精度は不要
3. サンプラーは「Biｌinear」が使える

4. 深度バッファは不要
5. 更新用のマテリアルを設定

6. Inspectorでのパラメータ調整を反映
できるようにするために「Realtime」更新

7. 初期化はスクリプトで実行（OnDemend）
• 色（白）とテクスチャの乗算

8. ダブルバッファ

①

②

③

④

⑤

⑥

⑦

⑧

プログラムワークショップⅣ

オブジェクトの設定

• オブジェクトのテクスチャに
カスタムレンダーテクスチャを設定

•更新用のスクリプトの変更
• 「Tex Color」プロパティを「2 Color

Custom Render Texture」に差し替え

プログラムワークショップⅣ

マテリアルの設定

2 Velocity Custom Render Texture

移流の強さも
いい感じに調整する

プログラムワークショップⅣ

やってみよう
ステップ6：模様を流す
• Inspectorで値(intensityなど)を変更してみよう

•初期化用のテクスチャを
自分の好きなものに
変えてみよう

プログラムワークショップⅣ

まとめ

• カスタムレンダーテクスチャ
• カスタムレンダーテクスチャの概要

• ライフゲーム
• GPU内で動的にテクスチャを更新する

• カールノイズ
• 流体のような表現を行う

• 複数のカスタムレンダーテクスチャを連携させる

	スライド 3: カスタム レンダーテクスチャ
	スライド 4: 今回のリポジトリ
	スライド 5: 本日の内容
	スライド 6: 本日の内容
	スライド 7: カスタムレンダーテクスチャの概要
	スライド 8: カスタムレンダーテクスチャ
	スライド 9: カスタムレンダーテクスチャ
	スライド 10: やってみよう：カスタムレンダーテクスチャの生成
	スライド 11: カスタムレンダーテクスチャ の設定
	スライド 12: カスタムレンダーテクスチャ用シェーダグラフの生成
	スライド 13: 　　　シェーダグラフ
	スライド 14: 可視化
	スライド 15: 可視化の シェーダグラフ
	スライド 16: 完成
	スライド 17: 特別なノードの紹介
	スライド 18: 本日の内容
	スライド 19: ライフゲーム
	スライド 20: ライフゲームのルール
	スライド 21: ライフゲームの更新の疑似コード
	スライド 22: 死んだ隣接セル数
	スライド 23: やってみよう
	スライド 24: 更新用のスクリプトのバインド
	スライド 25: 更新用のスクリプトコード
	スライド 26: 更新用のスクリプトのプロパティ設定
	スライド 27: シェーダグラフの生成
	スライド 28: シェーダグラフ
	スライド 29
	スライド 30: ライフゲーム のルール
	スライド 31: 可視化
	スライド 32: 完成
	スライド 33: 本日の内容
	スライド 34: 今回のネタ2
	スライド 35: 画面を流すには
	スライド 36: Curl-Noise
	スライド 37: Curl-Noise
	スライド 38: Curl noiseの作り方(3次元)
	スライド 39: 2次元のcurl noise
	スライド 40: 実装手順
	スライド 41: ステップ1：ノイズ（流れの元）
	スライド 42: Custom Render Textureの追加
	スライド 43: シェーダグラフの追加
	スライド 44: Custom Render Textureの設定
	スライド 45: 表示の設定
	スライド 46: シェーダグラフ
	スライド 47: シェーダグラフ
	スライド 48: シェーダグラフ
	スライド 49: やってみよう ステップ1：ノイズ（流れの元）
	スライド 50: ステップ2：流れ場の生成
	スライド 51: アセットの追加
	スライド 52: Custom Render Textureの設定
	スライド 53: シェーダグラフ
	スライド 54: シェーダグラフ
	スライド 55: シェーダグラフ
	スライド 56: シェーダグラフ
	スライド 57: 可視化
	スライド 58: シェーダグラフ
	スライド 59: シェーダグラフ
	スライド 60: シェーダグラフ
	スライド 61: シェーダグラフ
	スライド 62: オブジェクトの設定
	スライド 63: やってみよう ステップ2：流れ場の生成
	スライド 64: ステップ3：模様を流す
	スライド 65: アセットの追加
	スライド 66: Custom Render Textureの設定
	スライド 67: オブジェクトの設定
	スライド 68: シェーダグラフ
	スライド 69: シェーダグラフ
	スライド 70: シェーダグラフ
	スライド 71: シェーダグラフ
	スライド 72: シェーダグラフ
	スライド 73: シェーダグラフ
	スライド 74: マテリアルの設定
	スライド 75: やってみよう ステップ3：模様を流す
	スライド 76: 本日の内容
	スライド 77: ステップ4：ドラッグで初期化
	スライド 78: インタラクティブに動かす
	スライド 79: ドラッグの場所を検出する
	スライド 80: 1．スクリプトを追加して、イベント時の処理を作成
	スライド 81: 2.ドラッグ対象のオブジェ クトにイベントを追加
	スライド 82: 3．イベントに応じてシェーダにパラメータを送る
	スライド 83: スクリプトにおける他の処理
	スライド 84: 4．シェーダではパラメータに応じて場を作成する
	スライド 85: Custom Render Textureの設定
	スライド 86: シェーダグラフ
	スライド 87: シェーダグラフ
	スライド 88: シェーダグラフ
	スライド 89: シェーダグラフ
	スライド 90: スクリプトのメンバー設定
	スライド 91: 可視化
	スライド 92: やってみよう ステップ4：ドラッグで初期化
	スライド 93: ステップ5：流れ場の生成
	スライド 94: アセットの追加
	スライド 95: Custom Render Textureの設定
	スライド 96: 可視化
	スライド 97: オブジェクトの設定
	スライド 98: やってみよう ステップ5：流れ場の生成
	スライド 99: ステップ６：模様を流す
	スライド 100: アセットの追加
	スライド 101: Custom Render Textureの設定
	スライド 102: オブジェクトの設定
	スライド 103: マテリアルの設定
	スライド 104: やってみよう ステップ6：模様を流す
	スライド 105: まとめ

